Перевод: с английского на все языки

со всех языков на английский

New Jersey USA

  • 1 township of Mahwah [New Jersey, USA]

    География: г. Мава [штат Нью-Джерси, США]

    Универсальный англо-русский словарь > township of Mahwah [New Jersey, USA]

  • 2 New Jersey

    New Jersey [ˌnjuːˈdʒɜːzı; US ˌnuːˈdʒɜrziː; auch ˌnjuː-] s New Jersey n (Staat im Osten der USA)
    N.J. abk New Jersey

    English-german dictionary > New Jersey

  • 3 New Jersey

    New Jersey (stat i nordöstra USA)

    English-Swedish dictionary > New Jersey

  • 4 New Jersey

    [ˌnjuː'dʒɜːzɪ] [AE ˌnuː-]
    nome proprio New Jersey m.
    * * *
    n
    See:
    * * *
    (Place names) New Jersey /nju:ˈdʒɜ:zɪ, USA nu:-/
    * * *
    [ˌnjuː'dʒɜːzɪ] [AE ˌnuː-]
    nome proprio New Jersey m.

    English-Italian dictionary > New Jersey

  • 5 New Jersey

    • stát v USA

    English-Czech dictionary > New Jersey

  • 6 Stevens, Robert Livingston

    SUBJECT AREA: Ports and shipping
    [br]
    b. 18 October 1787 Hoboken, New Jersey, USA
    d. 20 April 1856 Hoboken, New Jersey, USA
    [br]
    American engineer, pioneer of steamboats and railways.
    [br]
    R.L.Stevens was the son of John Stevens and was given the technical education his father lacked. He assisted his father with the Little Juliana and the Phoenix, managed the commercial operation of the Phoenix on the Delaware River, and subsequently built many other steamboats.
    In 1830 he and his brother Edwin A.Stevens obtained a charter from the New Jersey Legislature for the Camden \& Amboy Railroad \& Transportation Company, and he visited Britain to obtain rails and a locomotive. Railway track in the USA then normally comprised longitudinal timber rails with running surfaces of iron straps, but Stevens designed rails of flat-bottom section, which were to become standard, and had the first batch rolled in Wales. He also designed hookheaded spikes for them, and "iron tongues", which became fishplates. From Robert Stephenson \& Co. (see Robert Stephenson) he obtained the locomotive John Bull, which was similar to the Liverpool \& Manchester Railway's Samson. The Camden \& Amboy Railroad was opened in 1831, but John Bull, a 0–4–0, proved over sensitive to imperfections in the track; Stevens and his mechanic, Isaac Dripps, added a two-wheeled non-swivelling "pilot" at the front to guide it round curves. The locomotive survives at the Smithsonian Institution, Washington, DC.
    [br]
    Further Reading
    H.P.Spratt, 1958, The Birth of the Steamboat, Charles Griffin.
    J.H.White Jr, 1979, A History of the American Locomotive—Its Development: 1830– 1880, New York: Dover Publications Inc.
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    PJGR

    Biographical history of technology > Stevens, Robert Livingston

  • 7 Stanley, Robert Crooks

    [br]
    b. 1 August 1876 Little Falls, New Jersey, USA
    d. 12 February 1951 USA
    [br]
    American mining engineer and metallurgist, originator of Monel Metal
    [br]
    Robert, the son of Thomas and Ada (Crooks) Stanley, helped to finance his early training at the Stevens Institute of Technology, Hoboken, New Jersey, by working as a manual training instructor at Montclair High School. After graduating in mechanical engineering from Stevens in 1899, and as a mining engineer from the Columbia School of Mines in 1901, he accepted a two-year assignment from the S.S.White Dental Company to investigate platinum-bearing alluvial deposits in British Columbia. This introduced him to the International Nickel Company (Inco), which had been established on 29 March 1902 to amalgamate the major mining companies working the newly discovered cupro-nickel deposits at Sudbury, Ontario. Ambrose Monell, President of Inco, appointed Stanley as Assistant Superintendent of its American Nickel Works at Camden, near Philadelphia, in 1903. At the beginning of 1904 Stanley was General Superintendent of the Orford Refinery at Bayonne, New Jersey, where most of the output of the Sudbury mines was treated.
    Copper and nickel were separated there from the bessemerized matte by the celebrated "tops and bottoms" process introduced thirteen years previously by R.M.Thompson. It soon occurred to Stanley that such a separation was not invariably required and that, by reducing directly the mixed matte, he could obtain a natural cupronickel alloy which would be ductile, corrosion resistant, and no more expensive to produce than pure copper or nickel. His first experiment, on 30 December 1904, was completely successful. A railway wagon full of bessemerized matte, low in iron, was calcined to oxide, reduced to metal with carbon, and finally desulphurized with magnesium. Ingots cast from this alloy were successfully forged to bars which contained 68 per cent nickel, 23 per cent copper and about 1 per cent iron. The new alloy, originally named after Ambrose Monell, was soon renamed Monel to satisfy trademark requirements. A total of 300,000 ft2 (27,870 m2) of this white, corrosion-resistant alloy was used to roof the Pennsylvania Railway Station in New York, and it also found extensive applications in marine work and chemical plant. Stanley greatly increased the output of the Orford Refinery during the First World War, and shortly after becoming President of the company in 1922, he established a new Research and Development Division headed initially by A.J.Wadham and then by Paul D. Merica, who at the US Bureau of Standards had first elucidated the mechanism of age-hardening in alloys. In the mid- 1920s a nickel-ore body of unprecedented size was identified at levels between 2,000 and 3,000 ft (600 and 900 m) below the Frood Mine in Ontario. This property was owned partially by Inco and partially by the Mond Nickel Company. Efficient exploitation required the combined economic resources of both companies. They merged on 1 January 1929, when Mond became part of International Nickel. Stanley remained President of the new company until February 1949 and was Chairman from 1937 until his death.
    [br]
    Principal Honours and Distinctions
    American Society for Metals Gold Medal. Institute of Metals Platinum Medal 1948.
    Further Reading
    F.B.Howard-White, 1963, Nickel, London: Methuen (a historical review).
    ASD

    Biographical history of technology > Stanley, Robert Crooks

  • 8 Stevens, John

    [br]
    b. 1749 New York, New York, USA
    d. 6 March 1838 Hoboken, New Jersey, USA
    [br]
    American pioneer of steamboats and railways.
    [br]
    Stevens, a wealthy landowner with an estate at Hoboken on the Hudson River, had his attention drawn to the steamboat of John Fitch in 1786, and thenceforth devoted much of his time and fortune to developing steamboats and mechanical transport. He also had political influence and it was at his instance that Congress in 1790 passed an Act establishing the first patent laws in the USA. The following year Stevens was one of the first recipients of a US patent. This referred to multi-tubular boilers, of both watertube and firetube types, and antedated by many years the work of both Henry Booth and Marc Seguin on the latter.
    A steamboat built in 1798 by John Stevens, Nicholas J.Roosevelt and Stevens's brother-in-law, Robert R.Livingston, in association was unsuccessful, nor was Stevens satisfied with a boat built in 1802 in which a simple rotary steam-en-gine was mounted on the same shaft as a screw propeller. However, although others had experimented earlier with screw propellers, when John Stevens had the Little Juliana built in 1804 he produced the first practical screw steamboat. Steam at 50 psi (3.5 kg/cm2) pressure was supplied by a watertube boiler to a single-cylinder engine which drove two contra-rotating shafts, upon each of which was mounted a screw propeller. This little boat, less than 25 ft (7.6 m) long, was taken backwards and forwards across the Hudson River by two of Stevens's sons, one of whom, R.L. Stevens, was to help his father with many subsequent experiments. The boat, however, was ahead of its time, and steamships were to be driven by paddle wheels until the late 1830s.
    In 1807 John Stevens declined an invitation to join with Robert Fulton and Robert R.Living-ston in their development work, which culminated in successful operation of the PS Clermont that summer; in 1808, however, he launched his own paddle steamer, the Phoenix. But Fulton and Livingston had obtained an effective monopoly of steamer operation on the Hudson and, unable to reach agreement with them, Stevens sent Phoenix to Philadelphia to operate on the Delaware River. The intervening voyage over 150 miles (240 km) of open sea made Phoenix the first ocean-going steamer.
    From about 1810 John Stevens turned his attention to the possibilities of railways. He was at first considered a visionary, but in 1815, at his instance, the New Jersey Assembly created a company to build a railway between the Delaware and Raritan Rivers. It was the first railway charter granted in the USA, although the line it authorized remained unbuilt. To demonstrate the feasibility of the steam locomotive, Stevens built an experimental locomotive in 1825, at the age of 76. With flangeless wheels, guide rollers and rack-and-pinion drive, it ran on a circular track at his Hoboken home; it was the first steam locomotive to be built in America.
    [br]
    Bibliography
    1812, Documents Tending to Prove the Superior Advantages of Rail-ways and Steam-carriages over Canal Navigation.
    He took out patents relating to steam-engines in the USA in 1791, 1803, and 1810, and in England, through his son John Cox Stevens, in 1805.
    Further Reading
    H.P.Spratt, 1958, The Birth of the Steamboat, Charles Griffin (provides technical details of Stevens's boats).
    J.T.Flexner, 1978, Steamboats Come True, Boston: Little, Brown (describes his work in relation to that of other steamboat pioneers).
    J.R.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    Transactions of the Newcomen Society (1927) 7: 114 (discusses tubular boilers).
    J.R.Day and B.G.Wilson, 1957, Unusual Railways, F.Muller (discusses Stevens's locomotive).
    PJGR

    Biographical history of technology > Stevens, John

  • 9 Benton, Linn Boyd

    SUBJECT AREA: Paper and printing
    [br]
    b. 13 May 1844 Little Falls, New York, USA
    d. 15 July 1932 Plainfield, New Jersey, USA
    [br]
    American typefounder, cutter and designer, inventor of the automatic punch-cutting machine.
    [br]
    Benton spent his childhood in Milwaukee and La Crosse, where he early showed a talent for mechanical invention. His father was a lawyer with an interest in newspapers and who acquired the Milwaukee Daily News. Benton became familiar with typesetting equipment in his father's newspaper office. He learned the printer's trade at another newspaper office, at La Crosse, and later worked as bookkeeper at a type foundry in Milwaukee. When that failed in 1873, Benton acquired the plant, and when he was joined by R.V.Waldo the firm became Benton, Waldo \& Co. Benton began learning and improving type-cutting practice. He first devised unit-width or "self-spacing" type which became popular with compositors, saving, it was reckoned, 20 per cent of their time. Meanwhile, Benton worked on a punch-cutting machine to speed up the process of cutting letters in the steel punches from which matrices or moulds were formed to enable type to be cast from molten metal. His first mechanical punch-cutter worked successfully in 1884. The third machine, patented in 1885, was the model that revolutionized the typefounding operation. So far, punch-cutting had been done by hand, a rare and expensive skill that was insufficient to meet the demands of the new typesetting machines, the monotype of Lanston and the linotype of Merganthaler. These were threatened with failure until Benton saved the day with his automatic punch-cutter. Mechanizing punch-cutting and the forming of matrices made possible the typesetting revolution brought about by mono-and linotype.
    In 1892 Benton's firm merged with others to form the American Type Founders Company. Benton's equipment was moved to New York and he with it, to become a board member and Chief Technical Advisor. In 1894 he became Manager of the company's new plant for type manufacture in Jersey City. Benton steadily improved both machinery and processes, for which he was granted twenty patents. With his son Morris Fuller, he was also notable and prolific in the field of type design. Benton remained in active association with his company until just two weeks before his death.
    [br]
    Further Reading
    Obituary, 1932, Inland Printer (August): 53–4.
    P.Cost, 1985, "The contributions of Lyn [sic] Boyd Benton and Morris Fuller Benton to the technology of typesetting and the art of typeface design", unpublished MSc thesis, Rochester Institute of Technology (the most thorough treatment).
    H.L.Bullen, 1922, Inland Printer (October) (describes Benton's life and work).
    LRD

    Biographical history of technology > Benton, Linn Boyd

  • 10 Black, Harold Stephen

    [br]
    b. 14 April 1898 Leominster, Massachusetts, USA
    d. 11 December 1983 Summitt, New Jersey, USA
    [br]
    American electrical engineer who discovered that the application of negative feedback to amplifiers improved their stability and reduced distortion.
    [br]
    Black graduated from Worcester Polytechnic Institute, Massachusetts, in 1921 and joined the Western Electric Company laboratories (later the Bell Telephone Laboratories) in New York City. There he worked on a variety of electronic-communication problems. His major contribution was the discovery in 1927 that the application of negative feedback to an amplifier, whereby a fraction of the output signal is fed back to the input in the opposite phase, not only increases the stability of the amplifier but also has the effect of reducing the magnitude of any distortion introduced by it. This discovery has found wide application in the design of audio hi-fi amplifiers and various control systems, and has also given valuable insight into the way in which many animal control functions operate.
    During the Second World War he developed a form of pulse code modulation (PCM) to provide a practicable, secure telephony system for the US Army Signal Corps. From 1963–6, after his retirement from the Bell Labs, he was Principal Research Scientist with General Precision Inc., Little Falls, New Jersey, following which he became an independent consultant in communications. At the time of his death he held over 300 patents.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Lamme Medal 1957.
    Bibliography
    1934, "Stabilised feedback amplifiers", Electrical Engineering 53:114 (describes the principles of negative feedback).
    21 December 1937, US patent no. 2,106,671 (for his negative feedback discovery.
    1947, with J.O.Edson, "Pulse code modulation", Transactions of the American Institute of Electrical Engineers 66:895.
    1946, "A multichannel microwave radio relay system", Transactions of the American Institute of Electrical Engineers 65:798.
    1953, Modulation Theory, New York: D.van Nostrand.
    1988, Laboratory Management: Principles \& Practice, New York: Van Nostrand Rheinhold.
    Further Reading
    For early biographical details see "Harold S. Black, 1957 Lamme Medalist", Electrical Engineering (1958) 77:720; "H.S.Black", Institute of Electrical and Electronics Engineers Spectrum (1977) 54.
    KF

    Biographical history of technology > Black, Harold Stephen

  • 11 Vail, Alfred Lewis

    SUBJECT AREA: Telecommunications
    [br]
    b. 25 September 1807 Morristown, New Jersey, USA
    d. 18 January 1859 Morristown, New Jersey, USA
    [br]
    American telegraph pioneer and associate of Samuel Morse; widely credited with the invention of "Morse" code.
    [br]
    After leaving school, Vail was initially employed at his father's ironworks in Morristown, but he then decided to train for the Presbyterian ministry, graduating from New York City University in 1836. Unfortunately, he was then obliged to abandon his chosen career because of ill health. He accidentally met Samuel Morse not long afterwards, and he became interested in the latter's telegraph experiments; in return for a share of the rights, he agreed to construct apparatus and finance the filing of US and foreign patents. Working in Morristown with Morse and Leonard Gale, and with financial backing from his father, Vail constructed around his father's plant a telegraph with 3 miles (4.8 km) of wire. It is also possible that he, rather than Morse, was largely responsible for devising the so-called Morse code, a series of dot and dash codes representing the letters of the alphabet, and in which the simplest codes were chosen for those letters found to be most numerous in a case of printer's type. This system was first demonstrated on 6 January 1838 and there were subsequent public demonstrations in New York and Philadelphia. Eventually Congress authorized an above-ground line between Washington and Baltimore, and on 24 May 1844 the epoch-making message "What hath God wrought?" was transmitted.
    Vail remained with Morse for a further four years, but he gradually lost interest in telegraphy and resigned, receiving no credit for his important contribution.
    [br]
    Bibliography
    The Magnetic Telegraph.
    Further Reading
    J.J.Fahie, 1884, A History of the Electric Telegraph to the Year 1837, London: E\&F Spon.
    KF

    Biographical history of technology > Vail, Alfred Lewis

  • 12 Holland, John Philip

    SUBJECT AREA: Ports and shipping
    [br]
    b. 29 February 1840 Liscanor, Co. Clare, Ireland
    d. 12 August 1915 Newark, New Jersey, USA
    [br]
    Irish/American inventor of the successful modern submarine
    [br]
    Holland was educated first in his native town and later in Limerick, a seaport bustling with coastal trade ships. His first job was that of schoolteacher, and as such he worked in various parts of Ireland until he was about 32 years old. A combination of his burning patriotic zeal for Ireland and his interest in undersea technology (then in its infancy) made him consider designs for underwater warships for use against the British Royal Navy in the fight for Irish independence. He studied all known works on the subject and commenced drawing plans, but he was unable to make real headway owing to a lack of finance.
    In 1873 he travelled to the United States, ultimately settling in New Jersey and continuing in the profession of teaching. His work on submarine design continued, but in 1875 he suffered a grave setback when the United States Navy turned down his designs. Help came from an unexpected source, the Irish Republican Brotherhood, or Fenian Society, which had been founded in Dublin and New York in 1858. Financial help enabled Holland to build a 4 m (13 ft) one-person craft, which was tested in 1878, and then a larger boat of 19 tonnes' displacement that was tested with a crew of three to depths of 20 m (65 ft) in New York's harbour in 1883. Known as the Fenian Ram, it embodied most of the principles of modern submarines, including weight compensation. The Fenians commandeered this boat, but they were unable to operate it satisfactorily and it was relegated to history.
    Holland continued work, at times independently and sometimes with others, and continuously advocated submarines to the United States Navy. In 1895 he was successful in winning a contract for US$150,000 to build the US Submarine Plunger at Baltimore. With too much outside interference, this proved an unsatisfactory venture. However, with only US$5,000 of his capital left, Holland started again and in 1898 he launched the Holland at Elizabeth, New Jersey. This 16 m (52 ft) vessel was successful, and in 1900 it was purchased by the United States Government.
    Six more boats were ordered by the Americans, and then some by the Russians and the Japanese. The British Royal Navy ordered five, which were built by Vickers Son and Maxim (now VSEL) at Barrow-in-Furness in the years up to 1903, commencing their long run of submarine building. They were licensed by another well-known name, the Electric Boat Company, which had formerly been the J.P.Holland Torpedo Boat Company.
    Holland now had some wealth and was well known. He continued to work, trying his hand at aeronautical research, and in 1904 he invented a respirator for use in submarine rescue work. It is pleasing to record that one of his ships can be seen to this day at the Royal Navy Submarine Museum, Gosport: HM Submarine Holland No. 1, which was lost under tow in 1913 but salvaged and restored in the 1980s.
    [br]
    Principal Honours and Distinctions
    Order of the Rising Sun, Japan, 1910.
    Bibliography
    1900, "The submarine boat and its future", North American Review (December). Holland wrote several other articles of a similar nature.
    Further Reading
    R.K.Morris, 1966 John P.Holland 1841–1914, Inventor of the Modern Submarine, Annapolis, MD: US Naval Institute.
    F.W.Lipscomb, 1975, The British Submarine, London: Conway Maritime Press. A.N.Harrison, 1979, The Development of HM Submarines from Holland No. 1 (1901) to
    Porpoise (1930), Bath: MoD Ships Department (internal publication).
    FMW

    Biographical history of technology > Holland, John Philip

  • 13 Jansky, Karl Guthe

    [br]
    b. 22 October 1905 Norman, Oklahoma, USA
    d. 14 February 1950 Red Bank, New Jersey, USA
    [br]
    American radio engineer who discovered stellar radio emission.
    [br]
    Following graduation from the University of Wisconsin in 1928 and a year of postgraduate study, Jansky joined Bell Telephone Laboratories in New Jersey with the task of establishing the source of interference to telephone communications by radio. To this end he constructed a linear-directional short-wave antenna and eventually, in 1931, he concluded that the interference actually came from the stars, the major source being the constellation Sagittarius in the direction of the centre of the Milky Way. Although he continued to study the propagation of short radio waves and the nature of observed echoes, it was left to others to develop the science of radioastronomy and to use the creation of echoes for radiolocation. Although he received no scientific award for his discovery, Jansky's name is primarily honoured by its use as the unit of stellar radio-emission strength.
    [br]
    Bibliography
    1935, "Directional studies of atmospherics at high frequencies", Proceedings of the Institute of Radio Engineers 23:1,158.
    1935, "A note on the sources of stellar interference", Proceedings of the Institute of Radio
    Engineers.
    1937, "Minimum noise levels obtained on short-wave radio receiving systems", Proceedings of the Institute of Radio Engineers 25:1,517.
    1941, "Measurements of the delay and direction of arrival of echoes from nearby short-wave transmitters", Proceedings of the Institute of Radio Engineers 29:322.
    Further Reading
    P.C.Mahon, 1975, BellLabs, Mission Communication. The Story of the Bell Labs.
    W.I.Sullivan (ed.), 1984, The Early Years of Radio-Astronomy: Reflections 50 Years after Jansky's Discovery, Cambridge: Cambridge University Press.
    KF

    Biographical history of technology > Jansky, Karl Guthe

  • 14 Johnson, Eldridge Reeves

    SUBJECT AREA: Recording
    [br]
    b. 18 February 1867 Wilmington, Delaware, USA
    d. 14 November 1945 Moorestown, New Jersey, USA
    [br]
    American industrialist, founder and owner of the Victor Talking Machine Company; developer of many basic constructions in mechanical sound recording and the reproduction and manufacture of gramophone records.
    [br]
    He graduated from the Dover Academy (Delaware) in 1882 and was apprenticed in a machine-repair firm in Philadelphia and studied in evening classes at the Spring Garden Institute. In 1888 he took employment in a small Philadelphia machine shop owned by Andrew Scull, specializing in repair and bookbinding machinery. After travels in the western part of the US, in 1891 he became a partner in Scull \& Johnson, Manufacturing Machinists, and established a further company, the New Jersey Wire Stitching Machine Company. He bought out Andrew Scull's interest in October 1894 (the last instalment being paid in 1897) and became an independent general machinist. In 1896 he had perfected a spring motor for the Berliner flat-disc gramophone, and he started experimenting with a more direct method of recording in a spiral groove: that of cutting in wax. Co-operation with Berliner eventually led to the incorporation of the Victor Talking Machine Company in 1901. The innumerable court cases stemming from the fact that so many patents for various elements in sound recording and reproduction were in very many hands were brought to an end in 1903 when Johnson was material in establishing cross-licencing agreements between Victor, Columbia Graphophone and Edison to create what is known as a patent pool. Early on, Johnson had a thorough experience in all matters concerning the development and manufacture of both gramophones and records. He made and patented many major contributions in all these fields, and his approach was very business-like in that the contribution to cost of each part or process was always a decisive factor in his designs. This attitude was material in his consulting work for the sister company, the Gramophone Company, in London before it set up its own factories in 1910. He had quickly learned the advantages of advertising and of providing customers with durable equipment and records. This motivation was so strong that Johnson set up a research programme for determining the cause of wear in records. It turned out to depend on groove profile, and from 1911 one particular profile was adhered to and processes for transforming the grooves of valuable earlier records were developed. Without precise measuring instruments, he used the durability as the determining factor. Johnson withdrew more and more to the role of manager, and the Victor Talking Machine Company gained such a position in the market that the US anti-trust legislation was used against it. However, a generation change in the Board of Directors and certain erroneous decisions as to product line started a decline, and in February 1926 Johnson withdrew on extended sick leave: these changes led to the eventual sale of Victor. However, Victor survived due to the advent of radio and the electrification of replay equipment and became a part of Radio Corporation of America. In retirement Johnson took up various activities in the arts and sciences and financially supported several projects; his private yacht was used in 1933 in work with the Smithsonian Institution on a deep-sea hydrographie and fauna-collecting expedition near Puerto Rico.
    [br]
    Bibliography
    Johnson's patents were many, and some were fundamental to the development of the gramophone, such as: US patent no. 650,843 (in particular a recording lathe); US patent nos. 655,556, 655,556 and 679,896 (soundboxes); US patent no. 681,918 (making the original conductive for electroplating); US patent no. 739,318 (shellac record with paper label).
    Further Reading
    Mrs E.R.Johnson, 1913, "Eldridge Reeves Johnson (1867–1945): Industrial pioneer", manuscript (an account of his early experience).
    E.Hutto, Jr, "Emile Berliner, Eldridge Johnson, and the Victor Talking Machine Company", Journal of AES 25(10/11):666–73 (a good but brief account based on company information).
    E.R.Fenimore Johnson, 1974, His Master's Voice was Eldridge R.Johnson, Milford, Del.
    (a very personal biography by his only son).
    GB-N

    Biographical history of technology > Johnson, Eldridge Reeves

  • 15 Allen, Horatio

    [br]
    b. 10 May 1802 Schenectady, New York, USA
    d. 1 January 1890 South Orange, New Jersey, USA
    [br]
    American engineer, pioneer of steam locomotives.
    [br]
    Allen was the Resident Engineer for construction of the Delaware \& Hudson Canal and in 1828 was instructed by J.B. Jervis to visit England to purchase locomotives for the canal's rail extension. He drove the locomotive Stourbridge Lion, built by J.U. Rastrick, on its first trial on 9 August 1829, but weak track prevented its regular use.
    Allen was present at the Rainhill Trials on the Liverpool \& Manchester Railway in October 1829. So was E.L.Miller, one of the promoters of the South Carolina Canal \& Rail Road Company, to which Allen was appointed Chief Engineer that autumn. Allen was influential in introducing locomotives to this railway, and the West Point Foundry built a locomotive for it to his design; it was the first locomotive built in the USA for sale. This locomotive, which bore some resemblance to Novelty, built for Rainhill by John Braithwaite and John Ericsson, was named Best Friend of Charleston. On Christmas Day 1830 it hauled the first scheduled steam train to run in America, carrying 141 passengers.
    In 1832 the West Point Foundry built four double-ended, articulated 2–2–0+0–2–2 locomotives to Horatio Allen's design for the South Carolina railroad. From each end of a central firebox extended two boiler barrels side by side with common smokeboxes and chimneys; wheels were mounted on swivelling sub-frames, one at each end, beneath these boilers. Allen's principal object was to produce a powerful locomotive with a light axle loading.
    Allen subsequently became a partner in Stillman, Allen \& Co. of New York, builders of marine engines, and in 1843 was President of the Erie Railroad.
    [br]
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    Dictionary of American Biography.
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    J.H.White Jr, 1994, "Old debts and new visions", in Common Roots—Separate Branches, London: Science Museum, 79–82.
    PJGR

    Biographical history of technology > Allen, Horatio

  • 16 Baldwin, Matthias William

    [br]
    b. 10 November 1795 Elizabethtown, New Jersey, USA
    d. 7 September 1866 Philadelphia, Pennsylvania, USA
    [br]
    American builder of steam locomotives, founder of Baldwin Locomotive Works.
    [br]
    After apprenticeship as a jeweller, Baldwin set up a machinery manufacturing business, and built stationary steam engines and, in 1832, his first locomotive, Old Ironsides, for the then-new Philadelphia, Germantown \& Norristown Railroad. Old Ironsides achieved only 1 mph (1.6 km/h) on trial, but after experimentation reached 28 mph (45 km/h). Over the next ten years Baldwin built many stationary engines and ten more locomotives, and subsequently built locomotives exclusively.
    He steadily introduced detail improvements in locomotive design; standardized components by means of templates and gauges from 1838 onwards; introduced the cylinder cast integrally with half of the smokebox saddle in 1858; and in 1862 imported steel tyres, which had first been manufactured in Germany by Krupp of Essen in 1851, and began the practice in the USA of shrinking them on to locomotive wheels. At the time of Matthias Baldwin's death, the Baldwin Locomotive Works had built some 1,500 locomotives: it went on to become the largest locomotive building firm to develop from a single foundation, and by the time it built its last steam locomotive, in 1955, had produced about 75,000 in total.
    [br]
    Further Reading
    J.H.White Jr, 1979, A History of the American Locomotive—Its Development 1830–
    1880, New York: Dover Publications Inc.
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    Dictionary of American Biography.
    PJGR

    Biographical history of technology > Baldwin, Matthias William

  • 17 Roebling, Washington Augustus

    SUBJECT AREA: Civil engineering
    [br]
    b. 26 May 1837 Saxonburg, Pennsylvania, USA
    d. 21 July 1926 Trenton, New Jersey, USA.
    [br]
    American civil engineer.
    [br]
    The son of John Augustus Roebling, he graduated in 1857 from the Rensselaer Polytechnic Institute as a civil engineer, and joined his father in his suspension bridge construction work. He served in the Civil War as a colonel of engineers in the Union Army, and in 1867, two years after the end of the war, he went to Europe to study new methods of sinking underwater foundations by means of compressed air. These new methods were employed in the construction of the Brooklyn Bridge, of which he took charge on his father's death in 1869. Timber pneumatic caissons were used, with a maximum pressure of 34 psi (2.4 kg/cm2) above atmospheric pressure. Two years after work on the piers had started in the caissons, Roebling, who had been working constantly with the men on the foundations of the piers, was carried unconscious out of the caisson, a victim of decompression sickness, then known as “caisson disease”. He was paralysed and lost the use of his voice. From then on he directed the rest of the work from the sickroom of his nearby house, his wife, Emily Warren Roebling, helping with his instructions and notes and carrying them out to the workforce; she even read a statement from him to the American Society of Civil Engineers. The erection of the cables, which were of steel, began in August 1876 and took twenty-six months to complete. In 1881 eleven trustees and Emily Warren Roebling walked across temporary planking, but the decking of the total span was not completed until 1885, fourteen years after construction of the bridge had started. The Brooklyn Bridge was Roebling's last major work, although following the death of his nephew in 1921 he was forced to head again the management of Roebling \& Company, though aged 84 and an invalid.
    [br]
    Further Reading
    D.B.Steinman and S.R.Watson, 1941, Bridges and their Builders, New York: Dover Books.
    D.McCullough, 1982, The Great Bridge: The Epic Story of the Building of the Brooklyn
    Bridge, New York: Simon \& Schuster.
    IMcN

    Biographical history of technology > Roebling, Washington Augustus

  • 18 Sickels, Frederick Ellsworth

    [br]
    b. 20 September 1819 Gloucester County, New Jersey, USA
    d. 8 March 1895 Kansas City, Missouri, USA
    [br]
    American inventor of a steam-inlet cut-off valve mechanism for engines and steam steering apparatus for ships.
    [br]
    Sickels was educated in New York City, where his father was a practising physician. As he showed mechanical aptitude, at the age of 16 he joined the Harlem Railroad as a rod man, and a year later became a machinist in the Allaire Works in New York, studying physics and mechanics in his spare time. He perfected his cut-off mechanism for drop valves in 1841 and patented it the following year. The liberating mechanism allowed the valve to fall quickly onto its seat and so eliminated "wire-drawing" of the steam, and Sickels arranged a dashpot to prevent the valve hitting the seat violently. Through further improvements patented in 1843 and 1845, he gained a considerable fortune, but he subsequently lost it through fighting patent infringements because his valve gear was copied extensively.
    In 1846 he turned his attention to using a steam engine to assist the steering in ships. He filed a patent application in 1849 and completed a machine in 1854, but he could not find any ship owner willing to try it until 1858, when it was fitted to the August. A patent was granted in 1860, but as no American ship owners showed interest Sickels went to England, where he obtained three British patents; once again, however, he found no interest. He returned to the United States in 1867 and continued his fruitless efforts until he was financially ruined. He patented improved compound engines in 1875 and also contributed improvements in sinking pneumatic piles. He turned to civil engineering and engaged in railway and bridge construction in the west. In about 1890 he was made Consulting Engineer to the National Water Works Company of New York and in 1891 became Chief Engineer of its operations at Kansas City.
    [br]
    Further Reading
    Dictionary of American Biography, 1935, Vol. XVII, New York: C.Scribner's Sons. C.T.Porter, 1908, Engineering Reminiscences, reprinted 1985, Bradley, Ill.: Lindsay Publications (comments on his cut-off valve gear).
    H.G.Conway, 1955–6, "Some notes on the origins of mechanical servo systems", Transactions of the Newcomen Society 29 (comments on his steam steering apparatus).
    RLH

    Biographical history of technology > Sickels, Frederick Ellsworth

  • 19 Lewis, Colonel Isaac Newton

    SUBJECT AREA: Weapons and armour
    [br]
    b. 12 October 1858 New Salem, Pennsylvania, USA
    d. 9 November 1931 Hoboken, New Jersey, USA
    [br]
    American soldier and weapons designer.
    [br]
    Lewis graduated from the US Military Academy, West Point, in 1884 and was commissioned into the Artillery. He soon displayed his technical aptitude and in 1891 patented an artillery ranging device. This was followed by further gunnery devices to improve artillery accuracy and a quick-firing field gun. He also displayed an interest in electricity and designed a car lighting system and wind-powered electric lighting.
    In 1911 he patented the gun that bears his name. The significance of this compared with existing machine guns was its comparatively light weight, which enabled it to be carried and operated by one person. Even so, the US Army showed no interest and so Lewis, by now retired from the Army, moved to Europe and set up a factory to produce it at Liège in Belgium. At the outbreak of war he moved his operation to England and merged it with the Birmingham Small Arms Company. The Lewis gun became the British Army's standard light machine gun during the First World War and was also used on aircraft. The USA eventually had a change of heart and also used the Lewis gun.
    CM

    Biographical history of technology > Lewis, Colonel Isaac Newton

  • 20 Hyatt, John Wesley

    [br]
    b. 28 November 1837 Starkey, New York, USA
    d. 10 May 1920 Short Hills, New Jersey, USA
    [br]
    American inventor and the first successful manufacturer of celluloid.
    [br]
    Leaving school at the age of 16, Hyatt spent ten years in the printing trade, demonstrating meanwhile a talent for invention. The offer of a prize of $10,000 for finding a substitute for ivory billiard balls stimulated Hyatt to experiment with various materials. After many failures, he arrived at a composition of paper flock, shellac and collodion, which was widely adopted. Noting the "skin" left after evaporating collodion, he continued his experiments, using nitrocellulose as a base for plastic materials, yet he remained largely ignorant of both chemistry and the dangers of this explosive substance. Independently of Parkes in England, he found that a mixture of nitrocellulose, camphor and a little alcohol could, by heating, be made soft enough to mould but became hard at room temperature. Hyatt's first patent for the material, celluloid, was dated 12 July 1870 (US pat. 105338) and was followed by many others for making domestic and decorative articles of celluloid, replacing more expensive natural materials. Manufacture began at Albany in the winter of 1872–3. In 1881 Hyatt and his brother Isiah Smith floated the Hyatt Pure Water Company. By introducing purifying coagulants into flowing water, they avoided the expense and delay of allowing the water to settle in large tanks before filtration. Many towns and paper and woollen mills adopted the new process, and in 1891 it was introduced into Europe. During 1891–2, Hyatt devised a widely used type of roller bearing. Later inventions included a sugar-cane mill, a multistitch sewing machine and a mill for the cold rolling and straightening of steel shafts. It was characteristic of Hyatt's varied inventions that they achieved improved results at less expense.
    [br]
    Principal Honours and Distinctions
    Society of Chemical Industry Perkin Medal 1914.
    Bibliography
    12 July 1870, US patent no. 105,338 (celluloid).
    Further Reading
    Obituary, 1920, Chem. Metal. Eng. (19 May).
    J. Soc. Chem. Ind. for 16 March 1914 and J. Ind. Eng. Chem. for March 1914 carried accounts of Hyatt's achievements, on the occasion of his award of the Perkin Medal of the Society of Chemical Industry in that year.
    LRD

    Biographical history of technology > Hyatt, John Wesley

См. также в других словарях:

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»